银纳米立方体

¥700.00¥11,200.00

清除
SKU: N/A 分类:

描述

银纳米立方体

NanoSeedz™提供高质量的银纳米立方体,具体的产品参数请见下面。这些银纳米立方体是在溶液中用化学法合成的,颗粒纯度高达95%以上,样品经过消光光谱和电镜严格表征。我们致力于精确控制银纳米立方体的尺寸、形状和颗粒纯度,但不同合成批次间不可避免地会有细小的尺寸变化。

平均边长:73.0 ± 3.2 nm和101.5 ± 5.3 nm

质量浓度:0.05 mg/mL

表面包覆分子:poly(vinylpyrrolidone) (PVP,分子量:55000)

分散溶剂:乙醇 (PVP,0.2 mg/mL) + 水,体积比1:1

流体动力直径:~130 nm和~180 nm

表面Zeta电位:-25 mV

银纳米立方体按下列方式提供。

平均边长(nm) 数量(瓶) 银的绝对质量(mg) 价格(人民币)
73.0 1 0.5 700
10 5 6300
20 10 11200
101.5 1 0.5 700
10 5 6300
20 10 11200

建议把银纳米立方体保存在溶液中避光并置于4 °C的冰箱中。为了确保银纳米立方体均匀分散在溶液中,在使用前先超声1分钟,然后再轻微地涡旋振动,或手动摇晃溶液直至银纳米立方体沉淀均匀分散。

参考文献

  1. C. Phan-Quang, N. Yang, H. K. Lee, H. Y. F. Sim, C. S. L. Koh, Y.-C. Kao, Z. C. Wong, E. K. M. Tan, Y.-E Miao, W. Fan, T. Liu, I. Y. Phang, X. Y. Ling. Tracking Airborne Molecules from Afar: Three-Dimensional Metal–Organic Framework Surface-Enhanced Raman Scattering Platform for Stand-Off and Real-Time Atmospheric Monitoring. ACS Nano, 2019, 13, 12090-12099.
  2. Y. F. Sim, H. K. Lee, X. Han, C. S. L. Koh, G. C. Phan-Quang, C. L. Lay, Y.-C. Kao, I. Y. Phang, E. K. L Yeow, X. Y. Ling. Concentrating Immiscible Molecules at Solid@MOF Interfacial Nanocavities to Drive an Inert Gas‐Liquid Reaction at Ambient Conditions. Angew. Chem., Int. Ed., 2018, 57, 17058-17062.
  3. S. L. Koh, H. K. Lee, X. Han, H. Y. F. Sim, X. Y. Ling. Plasmonic Nose: Integrating MOF-Enabled Molecular Pre-Concentration with Plasmonic Array for Molecular-Level Volatile Organic Compounds Vapor Recognition. Chem. Commun., 2018, 54, 2546-2549.
  4. K. Lee, Y. H. Lee, J. V Morabito, Y. Liu, C. S. L. Koh, I. Y. Phang, S. Pedireddy, X. Han, L.-Y. Chou, C.-K. Tsung, X. Y. Ling. Driving CO2 to a Quasi-Condensed Phase at the Interface between a Nanoparticle Surface and a Metal-Organic Framework at 1 bar and 298 K. J. Am. Chem. Soc., 2017, 139, 11513-11518.
  5. Yang, Y. H. Lee, C. L. Lay, X. Y. Ling. Tuning Molecular-Level Polymer Conformations Enables Dynamic Control over both the Interfacial Behaviors of Ag Nanocubes and their Assembled Metacrystals, Chem. Mater., 2017, 29, 6137-6144.
  6. S. L. Koh, H. K. Lee, G. C. Phan-Quang, X. Han, M. R. Lee, Z. Yang, X. Y. Ling. SERS- and Electrochemically-Active 3D Plasmonic Liquid Marble for Molecular-Level Spectroelectrochemical Investigation of Microliter Reaction. Angew. Chem., Int. Ed., 2017, 56, 8813-8817.
  7. Y. J. Yang, Y. H. Lee, I. Y. Phang, R. Jiang, H. Y. F. Sim, J. Wang, X. Y. Ling. A Chemical Approach to Break the Planar Configuration of Ag Nanocubes into Tunable Two-dimensional Metasurfaces. Nano Lett., 2016, 16 3872-3878.
  8. K. Lee, Y. H. Lee, I. Y. Phang, J. Wei, Y.-E Miao, T. Liu, X. Y. Ling. Plasmonic Liquid Marbles: A Miniature Substrateless SERS Platform for Quantitative and Multiplex Ultratrace Molecular Detection. Angew. Chem., Int. Ed., 2014, 53, 5054-5058.
  9. K. Lee, Y. H. Lee, Q. Zhang, I. Y. Phang, J. M. R. Tan, Y. Cui, X. Y. Ling. Superhydrophobic Surface-Enhanced Raman Scattering (SERS) Platform Fabricated by Assembly of Ag Nanocubes for Trace Molecular Sensing. ACS Appl. Mater. Interfaces, 2013, 5, 11409-11418.
  10. R. Tao, P. Sinsermsuksakul, P. Yang. Polyhedral Silver Nanocrystals with Distinct Scattering Signatures. Angew. Chem., Int. Ed., 2006, 45, 4597-4601.
0

打字并按Enter搜索